snpgdsPairIBDMLELogLik {SNPRelate} | R Documentation |
Calculate the log likelihood values from maximum likelihood estimation.
snpgdsPairIBDMLELogLik(geno1, geno2, allele.freq, k0=NaN, k1=NaN, relatedness=c("", "self", "fullsib", "offspring", "halfsib", "cousin", "unrelated"), verbose=TRUE)
geno1 |
the SNP genotypes for the first individual, 0 – BB, 1 – AB, 2 – AA, other values – missing |
geno2 |
the SNP genotypes for the second individual, 0 – BB, 1 – AB, 2 – AA, other values – missing |
allele.freq |
the allele frequencies |
k0 |
specified IBD coefficient |
k1 |
specified IBD coefficient |
relatedness |
specify a relatedness, otherwise use the values of k0 and k1 |
verbose |
if TRUE, show information |
If (relatedness
== "") and (k0 == NaN or k1 == NaN), then return
the log likelihood values for each (k0, k1) stored in ibdobj.
If (relatedness
== "") and (k0 != NaN) and (k1 != NaN), then return
the log likelihood values for a specific IBD coefficient (k0, k1).
If relatedness
is: "self", then k0 = 0, k1 = 0; "fullsib", then
k0 = 0.25, k1 = 0.5; "offspring", then k0 = 0, k1 = 1; "halfsib", then
k0 = 0.5, k1 = 0.5; "cousin", then k0 = 0.75, k1 = 0.25; "unrelated", then
k0 = 1, k1 = 0.
The value of log likelihood.
Xiuwen Zheng
Milligan BG. 2003. Maximum-likelihood estimation of relatedness. Genetics 163:1153-1167.
Weir BS, Anderson AD, Hepler AB. 2006. Genetic relatedness analysis: modern data and new challenges. Nat Rev Genet. 7(10):771-80.
Choi Y, Wijsman EM, Weir BS. 2009. Case-control association testing in the presence of unknown relationships. Genet Epidemiol 33(8):668-78.
snpgdsPairIBD
, snpgdsIBDMLE
,
snpgdsIBDMLELogLik
, snpgdsIBDMoM
# open an example dataset (HapMap) genofile <- snpgdsOpen(snpgdsExampleFileName()) YRI.id <- read.gdsn(index.gdsn(genofile, "sample.id"))[ read.gdsn(index.gdsn(genofile, "sample.annot/pop.group"))=="YRI"] # SNP pruning set.seed(10) snpset <- snpgdsLDpruning(genofile, sample.id=YRI.id, maf=0.05, missing.rate=0.05) snpset <- unname(sample(unlist(snpset), 250)) # the number of samples n <- 25 # specify allele frequencies RF <- snpgdsSNPRateFreq(genofile, sample.id=YRI.id, snp.id=snpset, with.id=TRUE) summary(RF$AlleleFreq) subMLE <- snpgdsIBDMLE(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id, allele.freq=RF$AlleleFreq) subMoM <- snpgdsIBDMoM(genofile, sample.id=YRI.id[1:n], snp.id=RF$snp.id, allele.freq=RF$AlleleFreq) # genotype matrix mat <- snpgdsGetGeno(genofile, sample.id=YRI.id[1:n], snp.id=snpset, snpfirstdim=TRUE) ######################## rv <- NULL for (i in 2:n) { rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "EM")) print(snpgdsPairIBDMLELogLik(mat[,1], mat[,i], RF$AlleleFreq, relatedness="unrelated", verbose=TRUE)) } rv summary(rv$k0 - subMLE$k0[1, 2:n]) summary(rv$k1 - subMLE$k1[1, 2:n]) # ZERO rv <- NULL for (i in 2:n) rv <- rbind(rv, snpgdsPairIBD(mat[,1], mat[,i], RF$AlleleFreq, "MoM")) rv summary(rv$k0 - subMoM$k0[1, 2:n]) summary(rv$k1 - subMoM$k1[1, 2:n]) # ZERO # close the genotype file snpgdsClose(genofile)