snpgdsHCluster {SNPRelate} | R Documentation |
Perform hierarchical cluster analysis on the dissimilarity matrix.
snpgdsHCluster(dist, sample.id=NULL, need.mat=TRUE, hang=0.25)
dist |
an object of "snpgdsDissClass" from |
sample.id |
to specify sample id, only work if dist is a matrix |
need.mat |
if TRUE, store the dissimilarity matrix in the result |
hang |
The fraction of the plot height by which labels should hang below the rest of the plot. A negative value will cause the labels to hang down from 0. |
Call the function hclust
to perform hierarchical cluster
analysis, using method="average"
.
Return a list (class "snpgdsHCClass"):
sample.id |
the sample ids used in the analysis |
hclust |
an object returned from |
dendrogram |
|
dist |
the dissimilarity matrix, if |
Xiuwen Zheng
snpgdsIBS
, snpgdsDiss
,
snpgdsCutTree
# open an example dataset (HapMap) genofile <- snpgdsOpen(snpgdsExampleFileName()) pop.group <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) pop.group <- as.factor(pop.group) pop.level <- levels(pop.group) diss <- snpgdsDiss(genofile) hc <- snpgdsHCluster(diss) rv <- snpgdsCutTree(hc) rv # call 'plot' to draw a dendrogram plot(rv$dendrogram, leaflab="none", main="HapMap Phase II") # the distribution of Z scores snpgdsDrawTree(rv, type="z-score", main="HapMap Phase II") # draw dendrogram snpgdsDrawTree(rv, main="HapMap Phase II", edgePar=list(col=rgb(0.5,0.5,0.5, 0.75), t.col="black")) # close the file snpgdsClose(genofile)