snpgdsAdmixPlot {SNPRelate} | R Documentation |
Plot the admixture proportions according to their ancestries.
snpgdsAdmixPlot(propmat, group=NULL, col=NULL, multiplot=TRUE, showgrp=TRUE, shownum=TRUE, ylim=TRUE, na.rm=TRUE) snpgdsAdmixTable(propmat, group, sort=FALSE)
propmat |
a sample-by-ancestry matrix of proportion estimates,
returned from |
group |
a character vector of a factor according to the samples
in |
col |
specify colors |
multiplot |
single plot or multiple plots |
showgrp |
show group names in the plot |
shownum |
|
ylim |
|
na.rm |
|
sort |
|
The minor allele frequency and missing rate for each SNP passed in
snp.id
are calculated over all the samples in sample.id
.
snpgdsAdmixPlot()
: none.
snpgdsAdmixTable()
: a list of data.frame
consisting of
group, num, mean, sd, min, max
Xiuwen Zheng
Zheng X, Weir BS. Eigenanalysis on SNP Data with an Interpretation of Identity by Descent. Theoretical Population Biology. 2015 Oct 23. pii: S0040-5809(15)00089-1. doi: 10.1016/j.tpb.2015.09.004.
# open an example dataset (HapMap) genofile <- snpgdsOpen(snpgdsExampleFileName()) # get population information # or pop_code <- scan("pop.txt", what=character()) # if it is stored in a text file "pop.txt" pop_code <- read.gdsn(index.gdsn(genofile, "sample.annot/pop.group")) # get sample id samp.id <- read.gdsn(index.gdsn(genofile, "sample.id")) # run eigen-analysis RV <- snpgdsEIGMIX(genofile) # define groups groups <- list(CEU = samp.id[pop_code == "CEU"], YRI = samp.id[pop_code == "YRI"], CHB = samp.id[is.element(pop_code, c("HCB", "JPT"))]) prop <- snpgdsAdmixProp(RV, groups=groups) # draw snpgdsAdmixPlot(prop, group=pop_code) # close the genotype file snpgdsClose(genofile)